Real-time System Identification of Unmanned Aerial Vehicles: A Multi-Network Approach
نویسندگان
چکیده
In this paper, real-time system identification of an unmanned aerial vehicle (UAV) based on multiple neural networks is presented. The UAV is a multi-input multi-output (MIMO) nonlinear system. Models for such MIMO system are expected to be adaptive to dynamic behaviour and robust to environmental variations. This task of accurate modelling has been achieved with a multi-network architecture. The multi-network with dynamic selection technique allows a combination of online and offline neural network models to be used in the architecture where the most suitable outputs are selected based on a given criterion. The neural network models are based on the autoregressive technique. The online network uses a novel training scheme with memory retention. Flight test validation results for online and offline models are presented. The multi-network dynamic selection technique has been validated on real-time hardware in the loop (HIL) simulation and the results show the superiority in performance compared to the individual models.
منابع مشابه
Fuzzy Adaptive Control of Unmanned Aerial Vehicle for Carrying Time-Varying Cargo on Predefined Path
At present, the use of unmanned aerial vehicles (UAVs) has been increased dramatically. The reasons for this development are cheapness, smallness, simplicity, and diversity of missions. The simplicity of guidance and control of multi-rotor drones is that they are equipped with an autopilot system. This system is responsible for flying control. UAVs do not have a high weight and often have three...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملTime-Varying Formation Controllers for Unmanned Aerial Vehicles Using Deep Reinforcement Learning
We consider the problem of designing scalable and portable controllers for unmanned aerial vehicles (UAVs) to reach time-varying formations as quickly as possible. This brief confirms that deep reinforcement learning can be used in a multi-agent fashion to drive UAVs to reach any formation while taking into account optimality and portability. We use a deep neural network to estimate how good a ...
متن کاملReal-time System Identification Techniques Based on Neural Networks for a Low-cost UAV
This paper describes system identification techniques based on neural networks for a nonlinear, Multi-Input Multi-Output (MIMO) system such as the Unmanned Aerial Vehicle (UAV). A novel training scheme for an online neural network model has been tested and implemented on the UAV and the results are presented. The online model is compared to a trained offline neural network model to bring out th...
متن کاملTask Allocation Algorithm for the Cooperating Group of Light Autonomous Unmanned Aerial Vehicles ?
In this paper a task allocation problem for multi-UAV systems was considered. The possibility of applying a consensus approach to organize a distribution of tasks in an autonomous group of small Unmanned Aerial Vehicles (UAVs) is studied. The use of several small UAVs with autonomous distribution of tasks gives a significant advantage over the use of a single UAV. The well-known consensus proto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 3 شماره
صفحات -
تاریخ انتشار 2008